Select Keyboard:
Türkçe ▾
  1. Türkçe
  2. English
  3. العربية
  4. Dansk
  5. Deutsch
  6. Ελληνικά
  7. Español
  8. فارسی
  9. Français
  10. Italiano
  11. Kurdî
  12. Nederlands
  13. Polski
  14. Português Brasileiro
  15. Português
  16. Русский
  17. Suomi
  18. Svenska
  19. 中文注音符号
  20. 中文仓颉输入法
X
"1234567890*-Bksp
Tabqwertyuıopğü,
CapsasdfghjklşiEnter
Shift<zxcvbnmöç.Shift
AltGr

işlevsel çözümleme

listen to the pronunciation of işlevsel çözümleme
Turkish - English
functional analysis
The branch of mathematics dealing with infinite-dimensional vector spaces, whose elements are actually functions, as well as generalizations such as Banach spaces and Hilbert spaces
Branch of mathematical analysis dealing with functionals, or functions of functions. It emerged as a distinct field in the 20th century, when it was realized that diverse mathematical processes, from arithmetic to calculus procedures, exhibit very similar properties. A functional, like a function, is a relationship between objects, but the objects may be numbers, vectors, or functions. Groupings of such objects are called spaces. Differentiation is an example of a functional because it defines a relationship between a function and another function (its derivative). Integration is also a functional. Functional analysis focuses on classes of functions, such as those that can be differentiated or integrated