Select Keyboard:
Türkçe ▾
  1. Türkçe
  2. English
  3. العربية
  4. Dansk
  5. Deutsch
  6. Ελληνικά
  7. Español
  8. فارسی
  9. Français
  10. Italiano
  11. Kurdî
  12. Nederlands
  13. Polski
  14. Português Brasileiro
  15. Português
  16. Русский
  17. Suomi
  18. Svenska
  19. 中文注音符号
  20. 中文仓颉输入法
X
"1234567890*-Bksp
Tabqwertyuıopğü,
CapsasdfghjklşiEnter
Shift<zxcvbnmöç.Shift
AltGr

binomial teoremi

listen to the pronunciation of binomial teoremi
التركية - الإنجليزية
binomial theorem
A formula giving the expansion of a binomial such as ( a + b ) raised to any positive integer power, i.e. ( a + b )^{n} . It's possible to expand the power into a sum of terms of the form ax^{b}y^{c} where the coefficient of each term is a positive integer. For example:

x+y ^4 \;=\; x^4 \,+\, 4 x^3y \,+\, 6 x^2 y^2 \,+\, 4 x y^3 \,+\, y^4.

{i} mathematical formula that provides the expansion of a binomial raised to any power
a theorem giving the expansion of a binomial raised to a given power
The theorem that specifies the expansion of any power (a + b). In algebra, a formula for expansion of the binomial (x + y) raised to any positive integer power. A simple case is the expansion of (x + y)^2, which is x^2 + 2xy + y^2. In general, the expression (x + y)^n expands to the sum of (n + 1)terms in which the power of x decreases from n to 0 while the power of y increases from 0 to n in successive terms. The terms can be represented in factorial notation by the expression [n!/((n -r)!r!)]x^n -ry^r in which r takes on integer values from 0 to n